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Preliminaries

Prime Number: a natural number p with no factors besides
trivially 1 and p itself.

Examples:

2 and 3 are prime. 4 is not prime because 4 = 2× 2. 5 is
prime. 6 is not prime because 6 = 2× 3. etc.

Theorem (Fundamental Theorem of Arithmetic)

Every natural number can be written as the product of primes
numbers uniquely (up to permutation of the factors)

Examples:

30 = 2× 3× 5; 74 = 37× 2; 100 = 2× 2× 5× 5 or 22 × 52
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Counting Primes Themselves

Theorem (Infinitely Many Primes, Euclid)

There are infinitely many prime numbers.

For a real number x , define

π(x) := #{prime p : p ≤ x}.

E.g.
π(10) = #{2, 3, 5, 7} = 4, 40 %.

π(100) = #{2, 3, 5, 7, ..., 83, 89, 97} = 25, 25 %

π(1000) = #{2, 3, 5, 7, ..., 983, 997} = 168, 16.8 %.
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The Prime Number Theorem

Theorem (Hadamard, de la Vallee Poussin, 1896)

π(x) ∼ x

ln x

i.e.

lim
x→∞

π(x)(
x

ln x

) = 1.

More specifically,
π(x) ∼ Li(x)

where

Li(x) =

∫ x

2

1

ln t
dt ∼ x

ln x
.



Counting
Different
Kinds of

Prime
Numbers

Cooper
O’Kuhn

Prime
Numbers

Arithmetic
Progressions

Polynomials

Proof
Methods

The Prime Number Theorem

Theorem (Hadamard, de la Vallee Poussin, 1896)

π(x) ∼ x

ln x

i.e.

lim
x→∞

π(x)(
x

ln x

) = 1.

More specifically,
π(x) ∼ Li(x)

where

Li(x) =

∫ x

2

1

ln t
dt ∼ x

ln x
.



Counting
Different
Kinds of

Prime
Numbers

Cooper
O’Kuhn

Prime
Numbers

Arithmetic
Progressions

Polynomials

Proof
Methods

The Prime Number Theorem

Theorem (Hadamard, de la Vallee Poussin, 1896)

π(x) ∼ x

ln x

i.e.

lim
x→∞

π(x)(
x

ln x

) = 1.

More specifically,
π(x) ∼ Li(x)

where

Li(x) =

∫ x

2

1

ln t
dt ∼ x

ln x
.



Counting
Different
Kinds of

Prime
Numbers

Cooper
O’Kuhn

Prime
Numbers

Arithmetic
Progressions

Polynomials

Proof
Methods

Prime Number Theorem, Examples

x π(x) x/ ln(x) % Error

100 25 22 12%

1,000 168 144 14%

10,000 1229 1085 11%

x π(x) Li(x) % Error

100 25 29 16%

1,000 168 176 4.8%

10,000 1229 1245 1.5%
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Primes in Arithmetic Progressions

Question

How do primes behave in arithmetic progressions? e.g. Primes
p of the form p = 4k + 1 i.e. 1 mod 4 like 5,17,37, etc.

Modulus and remainder must be coprime i.e. not share any
common factors. ex: 9k + 3 versus 9k + 4.

Theorem (Dirichlet)

If a and q are coprime, then there are infinitely many primes
which are a mod q.
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Prime Number Theorem in Arithmetic Progressions

Question

Do primes favor certain arithmetic progressions over others?
For instance, are there more primes which have last digit 1
than there are primes with last digit 3?

Let φ(q) be the number of natural numbers coprime and less
than or equal to q. Ex: φ(9) = #{1, 2, 4, 5, 7, 8} = 6.

Let π(x ; a, q) := #{p ≡ a mod q : p ≤ x}
Example: last digit of the primes less than x .

x π(x ; 1, 10) π(x ; 3, 10) π(x ; 7, 10) π(x ; 9, 10) π(x)
4

100 5 7 6 5 6

1000 40 42 46 38 42

10000 306 310 308 303 307
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Example of PNT in Arithmetic Progressions

Theorem (PNT for Arithmetic Progressions)

For fixed q, we have, as x goes to infinity,

π(x ; a, q) ∼ π(x)

φ(q)
.
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Uniformity in q

Question

How large can we make q so that the PNT in arithmetic
progression still holds? Can q grow with x?

Motivations: sieve theory, pushing theorems to their limits,
Generalized Riemann Hypothesis (GRH).

Theorem

If GRH holds, then for any small fixed ε > 0 and all q < x
1
2
−ε,

we have

π(x ; a, q) ∼ π(x)

φ(q)

as x goes to infinity.
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Siegel-Walfisz Theorem

Theorem (Siegel-Walfisz)

Let A > 0 be a large real number. For any q < (ln x)A, we have

π(x ; a, q) ∼ π(x)

φ(q)
.

as x goes to infinity.

Strongest unconditional result which achieves uniformity in q.

However, note that for large x , (ln(x))A � x
1
2 .



Counting
Different
Kinds of

Prime
Numbers

Cooper
O’Kuhn

Prime
Numbers

Arithmetic
Progressions

Polynomials

Proof
Methods

Siegel-Walfisz Theorem

Theorem (Siegel-Walfisz)

Let A > 0 be a large real number. For any q < (ln x)A, we have

π(x ; a, q) ∼ π(x)

φ(q)
.

as x goes to infinity.

Strongest unconditional result which achieves uniformity in q.

However, note that for large x , (ln(x))A � x
1
2 .



Counting
Different
Kinds of

Prime
Numbers

Cooper
O’Kuhn

Prime
Numbers

Arithmetic
Progressions

Polynomials

Proof
Methods

Bombieri-Vinogradov Theorem

Question

Do we need to look at individual q? What about if we
introduce some averaging in q? Can we obtain better results?
Would this kind of result even be useful?

Let Error(x ; a, q) :=
∣∣∣π(x ; a, q)− π(x)

φ(q)

∣∣∣. (Recall:

π(x ; a, q) ∼ π(x)
φ(q) ).

Let
E (x ; q) = max

1≤a<q
a,q coprime

E (x ; a, q)

Let Q ≥ 3 be somewhat large compared with x . Consider

1

Q

Q∑
q=1

Error(x , q).
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Bombieri-Vinogradov Theorem

The gist: 1
Q

∑Q
q=1 Error(x , q) is “small” enough to be dealt

with in nearly all cases if Q is “somewhat” less than the square
root of x .

More specifically,

Theorem (Bombieri-Vinogradov)

For a small, fixed ε > 0 and any fixed A > 0, if Q < x
1
2
−ε,

there exists a constant c(A) such that∑
q≤Q

E (x , q) < c(A)
x

(ln(x))A
.

The constant c(A) is ineffective.
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Primes in Polynomials

Question

We’ve looked at primes in degree 1 polynomials qn + a. What
about higher degree polynomials like n2 + 1 or multivariable
polynomials like a2 + b2?

Conjecture (Landau)

There are infinitely many primes p of the form n2 + 1.

Examples: 5 = 22 + 1, 17 = 42 + 1, 101 = 102 + 1
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Primes in Polynomials

Theorem (Fermat)

Every prime p ≡ 1 mod 4 can be written as the sum of two
squares of integers i.e. p = a2 + b2. Furthermore, this
representation is unique.

Examples: 101 = 12 + 102 113 = 72 + 82
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Question

If p = a2 + b2 and a < b, how small can a be? For example
101 = 12 + 102, versus 113 = 72 + 82.

Let
πδ(x) = #{p ≤ x : p = a2 + b2 : a ≤ p

1
2
−δ}

Theorem (Kubilius)

There exists a δ0 > 0 such that for all 0 < δ < δ0, we have

πδ(x) ∼ cx1−δ

ln x

for some constant c.

The current world record for δ0 is 12
37 .
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What we did

What we did: combined these theorems (and generalized). A
taste:

Let

πδ(x ; r , q) = |{p ≤ x : p = a2 + b2 : a < p
1
2
−δ : p ≡ r mod q}|

Theorem (Khale, O, Panidapu, Sun, Zhang)

(Worded version) The prime counting function πδ(x ; r , q)
obeys a Bombieri-Vinogradov type theorem as do variants
generalized to polynomials in more variables which obey a
particular set of algebraic conditions.
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Proof Methods

Uses information about ζ(s) :=
∑∞

n=1
1
ns = 1

1s + 1
2s + 1

3s + ...
for s > 1

Euler Proved:

ζ(s) =

 ∏
p prime

(
1− 1

ps

)−1

Can view ζ(s) as a function of complex variable s extended to
the entire complex plane (Riemann).
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Proof Methods

Zeroes of ζ(s) =⇒ Poles of 1
ζ(s) =⇒ Important!

ξ(s) =
1

2
π−

s
2 s(s − 1)Γ

( s
2

)
ζ(s),

ξ(s) = ξ(1− s)



Counting
Different
Kinds of

Prime
Numbers

Cooper
O’Kuhn

Prime
Numbers

Arithmetic
Progressions

Polynomials

Proof
Methods

Proof Methods

Zeroes of ζ(s) =⇒ Poles of 1
ζ(s) =⇒ Important!

ξ(s) =
1

2
π−

s
2 s(s − 1)Γ

( s
2

)
ζ(s),

ξ(s) = ξ(1− s)



Counting
Different
Kinds of

Prime
Numbers

Cooper
O’Kuhn

Prime
Numbers

Arithmetic
Progressions

Polynomials

Proof
Methods

Riemann Hypothesis

Theorem (Analytic fact)

All zeroes of ζ are either at the negative even integers or in the
strip 0 ≤ Re(s) ≤ 1

Theorem (Hadamard, de la Vallee Poussin, 1896)

ζ(s) 6= 0 if Re(s) = 1. Furthermore, PNT follows.

Conjecture (Riemann)

For 0 < Re(s) < 1, ζ(s) = 0 if and only if Re(s) = 1
2 .

Furthermore,
|π(x)− Li(x)| ≤ x

1
2

+ε.
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Theorem (Analytic fact)

All zeroes of ζ are either at the negative even integers or in the
strip 0 ≤ Re(s) ≤ 1

Theorem (Hadamard, de la Vallee Poussin, 1896)

ζ(s) 6= 0 if Re(s) = 1. Furthermore, PNT follows.

Conjecture (Riemann)

For 0 < Re(s) < 1, ζ(s) = 0 if and only if Re(s) = 1
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Counting Other Types of Prime Numbers

Example: primes in arithmetic progressions.
Let

χ(n) :=


+1 n ≡ 1 mod 4

−1 n ≡ 3 mod 4

0 n ≡ 0, 2 mod 4

As a sequence, χ : 1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, 0, ...

Properties

1 χ(nm) = χ(n)χ(m)

2 χ is periodic with period 4.

3 If n is odd,

1 + χ(n)

2
:=

{
1 n ≡ 1 mod 4

0 n ≡ 3 mod 4
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Fourier Expansion

More generally, there exist functions χ1, ..., χφ(q) (called
Dirichlet characters modulo q) with period q such that |χj | = 1
and the function

fa,q(n) :=

{
1 n ≡ a mod q

0 otherwise

can be written as

fa,q(n) =
1

φ(q)

φ(q)∑
j=1

χj(a)χj(n)

It suffices to study

L(s, χ) :=
∞∑
n=1

χ(n)

ns

to count primes in arithmetic progressions.
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L-functions

These L-functions admit analytic continuation similarly to the
ζ-function.

Theorem

No L-functions have any zeroes s with Re(s) = 1. Furthermore,
PNT for arithmetic progressions for fixed q follows.

Conjecture (GRH)

L(s, χ) = 0 in the strip 0 ≤ Re(s) ≤ 1 if and only if Re(s) = 1
2 .
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